
High Quality Adaptive

Soft Shadow Mapping

Roy Triesscheijn

A paper by Gaël Guennebaud, Loïc Barthe and Mathias Paulin

Overview

- Algorithms from 2 papers, initial 2006 version and

improved version from 2007

- Real-time soft shadow mapping by backprojection (2006)

- High-Quality Adaptive Soft Shadow Mapping (2007)

- Authors Gaël Guennebaud, Loïc Barthe and Mathias

Paulin

- Combination of shadow maps, back projecting and

adaptive precision to create real time soft-shadow maps

Index

1. Visibility Computation

2. Performance & Adaptive Precision

3. Summary & Discussion

Visibility Computation (2006)

Visibility Pass

- First step is to compute a normal shadow map

- The shadow map is back projected onto the light source

to compute the percentage visibility for a point p that

needs to be shaded

- Computed by finding the occluded area of each point on

the light by samples in the shadow map

Visibility Computation (2006)

For point p in the scene

- Project p onto light, light space

coordinates (u,v)

- Assume p is fully visible

- Remove from p the area occluded

by every sample stored

in the shadow map

(Search area is later optimized using

Hierarchical Shadow Maps, HSM)

Visibility Computation (2006)

Gap filling

- Visibility is not correct due

to gaps and overlaps

when back projecting

- Overlaps cause darker

penumbrae, not fixed

- Gaps fixed by extending

occluders to neighbouring

occluding samples in the

shadow map

Visibility Computation (2006)

Results

- The 2006 algorithm already gives nice results, is geometry

independent, works in real time

Ground Truth (2500ms per frame, 0.4fps) 2006 algorithm (40ms per frame, 25fps)

Visibility Computation (2006)

Results

- But, gap filling and overlap cause shadow

overestimation, there is the single light

artifact, shadow contours can be rough

Top: ground truth

Bottom: 2006 algorithm

Ground truth 2006 algorithm

Visibility Computation (2007)

Goals for 2007 algorithm

- Fix the gap and overlap problems

- Do not overestimate shadows

- Produce smoother shadow edges

- Keep the performance equal

- The 2007 algorithm will not solve the single light artifact

Visibility Computation (2007)

Visibility Pass

- Still compute a normal shadow map first

- From this a Hierarchical Shadow Map is computed, which

stores the lowest and highest depth values for each cell

- From the HSM a kernel (Search Area in the 2006 paper)

is computed in which we can find possible occluders

when back projecting

Visibility Computation (2007)

Kernel Computation

- In the HSM find the pyramid defined

by the light quadrilateral and the

point p that needs to be shaded

- Refine by projecting the intersection

of the pyramid and the zmin plane

defined by the top level of the HSM

- Iteratively refine by traversing the

HSM

Visibility Computation (2007)

Visibility Computation

- Now we know where to search for occluders

- Instead of back projecting all occluders onto the light to

compute the visibility percentage we only send the

contour edges of the occluders as seen from p

- The contours are filled by radially integration, this solves

both the gap and overlap problems

Visibility Computation (2007)

Smooth Contour Detection

- Contour detection algorithm based on 2x2 blocks of

samples from the kernel

- Contours are precomputed (left image) shader only needs

look up in a table (right image) based on a mask

calculated from the occluded pixels

Visibility Computation (2007)

Radial Area Integration

- Accumulate the signed area covered from each contour

edge (a)

- Similar to hard-shadow computations with normal shadow

map, but we have to check the hard shadows are inside

the contours (b) else we get an aliased result (c)

Visibility Computation (2007)

Results

No more shadow overestimation, smoother shadows, equal

performance as 2006 algorithm

Ground truth 2006 algorithm 2007 algorithm

Visibility Computation (2007)

Results

But, still discontinuities in difficult shadows

Ground truth 2006 algorithm 2007 algorithm

Visibility Computation (2007)

Results

But, still discontinuities in difficult shadows

(Exaggerated)

Ground truth 2006 algorithm 2007 algorithm

Adaptive Precision (2006)

Problem Description

- Speed of the algorithm mainly depends on the size in

pixels of the search areas

- For very large penumbra this can cause performance

problems

- But very large penumbra require less detail than thinner

ones (due to lower frequency)

Adaptive Precision (2006)

Solution

- Introduce a Hierarchical Shadow Map (HSM), similar to

mip-maps or quadtrees

- Sample very large penumbra on a less detailed level in

the HSM defined by a maximum search area threshold,

guarantees a level of performance

- Leads to small visual quality degradations where levels

change

Adaptive Precision (2006)

Results

Different settings for the threshold and shadow map resolution Degradation

Adaptive Precision (2007)

Goals for 2007 algorithm

- Fix the degradation where different levels of the HSM are

sampled

- Also provide a second optimization which works in screen

space and reduces the output resolution, as opposed to

the input resolution of the above light space solution

Adaptive Precision (2007)

Light Space Optimizations

- Degradation is caused because of sampling level

differences in the HSM

- The solution is to blend between different sampling levels

using an algorithm akin to trilinear mip-map sampling

- Blending is done between the two closest HSM levels so

overlaps are always smooth

Adaptive Precision (2007)

Light Space Optimizations Results

Adaptive Precision (2007)

Screen Space Optimizations, idea

- The idea is to adjust the screen resolution according to

the screen space size of the penumbrae

- This is done by cancelling the visibility computations of

some screen pixels

- The missing information is reconstructed using a pull-

push algorithm

Adaptive Precision (2007)

Screen Space Optimizations, skipping

- To do this correctly the penumbrae size is conservatively

estimated as the smallest diameter of a projection of a

disk with the object space radius of the penumbrae onto

screen space

- The density of selected pixels is then adjusted for this

screen space size of the penumbrae

Adaptive Precision (2007)

Screen Space Optimizations, skipping

Adaptive Precision (2007)

Screen Space Optimizations, Pull-Push

- This leads to a sparse unstructured visibility buffer that

contains gaps

- A weight buffer is created with 1’s for the computed pixels

and 0’s for the gaps

- Pull: the weight and visibility buffers are reduced by

accumulating and averaging

- Push: the gaps are iteratively filled, from lowest to highest

resolution by linear blending

Adaptive Precision (2007)

Screen Space Optimizations, Pull-Push

Before and after Pull-Push reconstruction, orange pixels are skipped pixels (gaps)

Adaptive Precision (2007)

Screen Space Optimizations, Results

a. Raw algorithm

b. View dependent selection (from high to low quality)

c. Light space adaptive precision (from hight to low quality

d. View depedent selection (high quality) + light space adaptive precision (high quality)

The numbers indicate the speed up of the algorithm, total performance went from a: 31fps to d: 71fps

Video

Summary & Discussion

Pros

- Geometry independent

- Realtime, good performance

- Nice results

- Easy to bias towards performance or quality

- Even wrong (higher performance) shadows look good

- All pros of shadow maps

Summary & Discussion

Cons

- Discontinuities

- Single light artifact

- All cons of shadow maps

- Aggressive reconstruction in light space can lead to

blurring penumbrae

- Aggressive reconstruction in screen space can lead to

filling in lit areas with shadows

Questions

?

